Multiple solutions for a class of semilinear elliptic problems with Robin boundary condition
نویسندگان
چکیده
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملMultiple Solutions For Semilinear Elliptic Boundary Value Problems At Resonance
In recent years several nonlinear techniques have been very successful in proving the existence of weak solutions for semilinear elliptic boundary value problems at resonance. One technique involves a variational approach where solutions are characterized as saddle points for a related functional. This argument requires that the Palais-Smale condition and some coercivity conditions are satisfie...
متن کاملExistence of Solutions for Semilinear Elliptic Problems without (ps) Condition
We establish an existence result for semilinear elliptic problems with the associated functional not satisfying the Palais-Smale condition. The nonlinearity of our problem does not satisfy the Ambrosetti-Rabinowitz condition.
متن کاملMultiple positive solutions for semilinear elliptic systems with nonlinear boundary condition
We consider the semilinear elliptic system { −∆u+m1(x)u = fu(x, u, v) x ∈ Ω, −∆v +m2(x)v = fv(x, u, v) x ∈ Ω, with the boundary conditions ∂u ∂n = λg(x, u) and ∂v ∂n = μh(x, v), where Ω ⊂ RN is a bounded smooth domain, λ, μ > 0 and the functions f , g, h, m1 and m2 satisfy some suitable conditions. Using the fibering map and by extracting the Palais-Smale sequences in the Nehari manifold, we pr...
متن کاملexistence results for a class of semilinear elliptic boundary value problems
we consider the semilinear elliptic boundary value problem = ∈∂ω− δ = ∈ωu x xu x f u x x( ) 0;( ) λ ( ( ));where λ > 0 is a parameter, ω is a bounded region in rn with a smooth boundary, and f is asmooth function. we prove, under some additional conditions, the existence of a positive solution for λlarge. we prove that our solution u for λ large is such that = →∞∈ω|| u ||: sup| u(x) |xas λ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.09.066